Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.733
Filtrar
1.
Nat Commun ; 15(1): 3931, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729993

RESUMO

MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transcrição Gênica , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732061

RESUMO

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.


Assuntos
Proteína Homeobox Nanog , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Animais , Masculino , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Diferenciação Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Simulação por Computador , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Humanos
3.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711334

RESUMO

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Miócitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Animais , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Modelos Animais de Doenças , Neovascularização Fisiológica , Células Cultivadas
4.
Methods Mol Biol ; 2799: 79-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727904

RESUMO

The analysis of rare NMDAR gene variants in mice, coupled with a fundamental understanding of NMDAR function, plays a crucial role in achieving therapeutic success when addressing NMDAR dysfunctions in human patients. For the generation of such NMDAR mouse models, a basic knowledge of receptor structure, along with skills in database sequence analysis, cloning in E. coli, genetic manipulation of embryonic stem (ES) cells, and ultimately the genetic modification of mouse embryos, is essential. Primarily, this chapter will focus on the design and synthesis of NMDAR gene-targeting vectors that can be used successfully for the genetic manipulation of mice. We will outline the core principles of the design and synthesis of a gene targeting vector that facilitates the introduction of single-point mutations in NMDAR-encoding genes in mice. The transformation of ES cells, selection of positive ES cell colonies, manipulation of mouse embryos, and genotyping strategies will be described briefly.


Assuntos
Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Células-Tronco Embrionárias/metabolismo , Marcação de Genes/métodos , Vetores Genéticos/genética
5.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701759

RESUMO

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Assuntos
Processamento Alternativo , Diferenciação Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogêneas , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Fatores de Transcrição , Processamento Alternativo/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Transcrição Gênica , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Éxons/genética , Humanos , Autorrenovação Celular/genética
6.
Genome Biol ; 25(1): 122, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741214

RESUMO

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Assuntos
Células-Tronco Pluripotentes , Análise de Célula Única , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Genoma Humano , Eucromatina/genética , Eucromatina/metabolismo , Cromatina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Heterocromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Montagem e Desmontagem da Cromatina
7.
Cell Mol Life Sci ; 81(1): 182, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615283

RESUMO

BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Neurais , Animais , Camundongos , Estudos Prospectivos , Diferenciação Celular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Apoptose/genética , Proliferação de Células/genética
8.
Theriogenology ; 222: 10-21, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603966

RESUMO

Producing chimaeras constitutes the most reliable method of verifying the pluripotency of newly established cells. Moreover, forming chimaeras by injecting genetically modified embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) into the embryo is part of the procedure for generating transgenic mice, which are used for understanding gene function. Conventional methods for generating transgenic mice, including the breeding of chimaeras and tetraploid complementation, are time-consuming and cost-inefficient, with significant limitations that hinder their effectiveness and widespread applications. In the present study, we modified the traditional method of chimaera generation to significantly speed up this process by generating mice exclusively derived from ESCs. This study aimed to assess whether fully ESC-derived mice could be obtained by modulating fibroblast growth factor 4 (FGF4) levels in the culture medium and changing the direction of cell differentiation in the chimaeric embryo. We found that exogenous FGF4 directs all host blastomeres to the primitive endoderm fate, but does not affect the localisation of ESCs in the epiblast of the chimaeric embryos. Consequently, all FGF4-treated chimaeric embryos contained an epiblast composed exclusively of ESCs, and following transfer into recipient mice, these embryos developed into fully ESC-derived newborns. Collectively, this simple approach could accelerate the generation of ESC-derived animals and thus optimise ESC-mediated transgenesis and the verification of cell pluripotency. Compared to traditional methods, it could speed up functional studies by several weeks and significantly reduce costs related to maintaining and breeding chimaeras. Moreover, since the effect of stimulating the FGF signalling pathway is universal across different animal species, our approach can be applied not only to rodents but also to other animals, offering its utility beyond laboratory settings.


Assuntos
Quimera , Fator 4 de Crescimento de Fibroblastos , Animais , Fator 4 de Crescimento de Fibroblastos/genética , Camundongos , Células-Tronco Embrionárias , Camundongos Transgênicos , Embrião de Mamíferos , Diferenciação Celular
9.
Stem Cell Res Ther ; 15(1): 116, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654389

RESUMO

Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.


Assuntos
Células-Tronco Embrionárias , Haploidia , Humanos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Animais , Diferenciação Celular
10.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654216

RESUMO

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Assuntos
Dano ao DNA , Melanoma , Microambiente Tumoral , Neoplasias Uveais , Animais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade , Camundongos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/terapia , Células-Tronco Embrionárias/metabolismo , Reparo do DNA por Junção de Extremidades , Linhagem Celular Tumoral , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico , Masculino , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Transdução de Sinais , Reparo do DNA
11.
Elife ; 122024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669177

RESUMO

Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.


Assuntos
Cromatina , Epigênese Genética , Genoma , Animais , Camundongos , Cromatina/metabolismo , Cromatina/genética , Variação Genética , Células-Tronco Embrionárias/metabolismo
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 213-222, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595236

RESUMO

OBJECTIVE: To evaluate the developmental toxicity of Cry1Ab protein by studying its effects on cell proliferation and differentiation ability using a developmental toxicity assessment model based on embryonic stem-cell. METHODS: Cry1Ab protein was tested in seven dose groups (31.25, 62.50, 125.00, 250.00, 320.00, 1 000.00, and 2 000.00 µg/L) on mouse embryonic stem cells D3 (ES-D3) and 3T3 mouse fibroblast cells, with 5-fluorouracil (5-FU) used as the positive control and phosphate buffer saline (PBS) as the solvent control. Cell viability was detected by CCK-8 assay to calculate the 50% inhibitory concentration (IC50) of the test substance for different cells. Additionally, Cry1Ab protein was tested in five dose groups (125.00, 250.00, 320.00, 1 000.00, and 2 000.00 µg/L) on ES-D3 cells, with PBS as the solvent control and 5-FU used for model validation. After cell treatment, cardiac differentiation was induced using the embryonic bodies (EBs) culture method. The growth of EBs was observed under a microscope, and their diameters on the third and fifth days were measured. The proportion of EBs differentiating into beating cardiomyocytes was recorded, and the 50% inhibition concentration of differentiation (ID50) was calculated. Based on a developmental toxicity discrimination function, the developmental toxicity of the test substances was classified. Furthermore, at the end of the culture period, mRNA expression levels of cardiac differentiation-related markers (Oct3/4, GATA-4, Nkx2.5, and ß-MHC) were quantitatively detected using real-time quantitative polymerase chain reaction (qPCR) in the collected EBs samples. RESULTS: The IC50 of 5-FU was determined as 46.37 µg/L in 3T3 cells and 32.67 µg/L in ES-D3 cells, while the ID50 in ES-D3 cells was 21.28 µg/L. According to the discrimination function results, 5-FU was classified as a strong embryotoxic substance. There were no statistically significant differences in cell viability between different concentrations of Cry1Ab protein treatment groups and the control group in both 3T3 cells and ES-D3 cells (P>0.05). Moreover, there were no statistically significant differences in the diameter of EBs on the third and fifth days, as well as their morphology, between the Cry1Ab protein treatment groups and the control group (P>0.05). The cardiac differentiation rate showed no statistically significant differences between different concentrations of Cry1Ab protein treatment groups and the control group (P>0.05). 5-FU significantly reduced the mRNA expression levels of ß-MHC, Nkx2.5, and GATA-4 (P < 0.05), showing a dose-dependent trend (P < 0.05), while the mRNA expression levels of the pluripotency-associated marker Oct3/4 exhibited an increasing trend (P < 0.05). However, there were no statistically significant differences in the mRNA expression levels of mature cardiac marker ß-MHC, early cardiac differentiation marker Nkx2.5 and GATA-4, and pluripotency-associated marker Oct3/4 between the Cry1Ab protein treatment groups and the control group (P>0.05). CONCLUSION: No developmental toxicity of Cry1Ab protein at concentrations ranging from 31.25 to 2 000.00 µg/L was observed in this experimental model.


Assuntos
Células-Tronco Embrionárias , Miócitos Cardíacos , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Miócitos Cardíacos/metabolismo , Fluoruracila/toxicidade , RNA Mensageiro/metabolismo , Solventes/metabolismo , Solventes/farmacologia
13.
Cell Reprogram ; 26(2): 46-56, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635924

RESUMO

Culturing of mouse and human embryonic stem cells (ESCs) in vitro was a major breakthrough in the field of stem cell biology. These models gained popularity very soon mainly due to their pluripotency. Evidently, the ESCs of mouse and human origin share typical phenotypic responses due to their pluripotent nature, such as self-renewal capacity and potency. The conserved network of core transcription factors regulates these responses. However, significantly different signaling pathways and upstream transcriptional networks regulate expression and activity of these core pluripotency factors in ESCs of both the species. In fact, ample evidence shows that a pathway, which maintains pluripotency in mouse ESCs, promotes differentiation in human ESCs. In this review, we discuss the role of canonical signaling pathways implicated in regulation of pluripotency and differentiation particularly in mouse and human ESCs. We believe that understanding these distinct and at times-opposite mechanisms-is critical for the progress in the field of stem cell biology and regenerative medicine.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais
14.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656788

RESUMO

Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Animais , Camundongos , Desenvolvimento Embrionário/genética , Processamento Alternativo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos
15.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647453

RESUMO

Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.


Assuntos
Cálcio , Vesículas Extracelulares , Sinaptotagmina I , Animais , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Comunicação Celular , Organelas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Tetraspaninas/metabolismo , Tetraspaninas/genética , Vesículas Extracelulares/metabolismo , Camundongos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo
16.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38490199

RESUMO

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Assuntos
Células-Tronco Embrionárias Murinas , Sequências Reguladoras de Ácido Nucleico , Camundongos , Animais , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38509249

RESUMO

All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early  post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Camadas Germinativas/metabolismo , Linhagem Celular , Mamíferos
18.
PLoS One ; 19(3): e0298818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507426

RESUMO

Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.


Assuntos
Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Proliferação de Células , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular/genética
19.
Stem Cell Res ; 76: 103376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452706

RESUMO

The ISL LIM homeobox 1 (ISL1) gene belongs to the LIM/homeodomain transcription factor family and plays a pivotal role in conveying multipotent and proliferative properties of cardiac precursor cells. Mutations in ISL1 are linked to congenital heart disease. To further explore ISL1's role in the human heart, we have created a homozygous ISL1 knockout (ISL1-KO) human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this ISL1-KO cell line retains normal morphology, pluripotency, and karyotype. This resource serves as a valuable tool for investigating ISL1's function in cardiomyocyte differentiation.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas , Humanos , Sistemas CRISPR-Cas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular , Coração , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas com Homeodomínio LIM/genética
20.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499329

RESUMO

Primordial germ cells (PGCs) are the embryonic precursors of sperm and oocytes, which transmit genetic/epigenetic information across generations. Mouse PGC and subsequent gamete development can be fully reconstituted in vitro, opening up new avenues for germ cell studies in biomedical research. However, PGCs show molecular differences between rodents and humans. Therefore, to establish an in vitro system that is closely related to humans, we studied PGC development in vivo and in vitro in the common marmoset monkey Callithrix jacchus (cj). Gonadal cjPGCs at embryonic day 74 express SOX17, AP2Ɣ, BLIMP1, NANOG, and OCT4A, which is reminiscent of human PGCs. We established transgene-free induced pluripotent stem cell (cjiPSC) lines from foetal and postnatal fibroblasts. These cjiPSCs, cultured in defined and feeder-free conditions, can be differentiated into precursors of mesendoderm and subsequently into cjPGC-like cells (cjPGCLCs) with a transcriptome similar to human PGCs/PGCLCs. Our results not only pave the way for studying PGC development in a non-human primate in vitro under experimentally controlled conditions, but also provide the opportunity to derive functional marmoset gametes in future studies.


Assuntos
Callithrix , Células-Tronco Pluripotentes , Masculino , Camundongos , Animais , Sêmen , Células Germinativas/metabolismo , Células-Tronco Embrionárias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...